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Introduction

Characteristically, an experiment involves a collection of treatment

c.anditlons (i.e. treatment levels or treatment combinations), a

collection of experimental units, and an explicit plan for assigning

treatment conditions to units. For purposes of exposition, we can

divide experiments into those in which time plays an important role and

those In which it does not. Time may enter into the experimental plan

In several ways. For example, 1) at some point during a sequence of

repeated measurements of the experimental unit a treatment condition

may bc introduced, as in trend analysis, 2) the experimental material

may he successively exposed to several pre-specified treatment conditions

and measured after each, as when assessment of order or residual effects

Is of interest, 3) treatment conditions may be administered to experimental

units over time in such a way that previous treatment conditions and

responses to them are used in determining the treatment conditions which

follow. Note that in examples two and three treatment conditions are

administered over time. But in the second example the exact treatment

conditions are determined a priori, while in example three, they are

determined during the experiment as a function of accumulating data.

For convenience, we label the three examples as instances of repeated

measurement, serial, and sequentiak designs, respectively.

The present research is concerned with sequential experimentation.

Experimental designs which are sequential in nature require that the

experimenter consider both how the ensuing treatment conditions will be

changed or adjusted and how the process will be discontinued,

4



1-2

i.e. a "stopping rule". Sequential experiments can be differentiated

from one another by considering whether a formal or informal procedure

is used when adjusting treatment conditions, whether the stopping rule

is formal or informal, whether or not more than one factor is used

(i.e. multifactor experiment employing several different treatments),

whether the independent variable or dependent variable is continuous

or discrete, and by considering the purpose of the procedures (e.g.

locating maxima). (For a general review and bibliography of recent

work on experimental design, including the topics dealt with here, see

Herzberg and Cox (1969). For a current review of the design of sequential

experiments, see Chernoff (1975). Wetherill (1975) provides a useful

introduction to the subject of our paper).)

Examples of applications of sequential designs are not plentiful

in the educational research literature. Meyer (1963) presents an

application of response surface methodology. This methodology is seen

as sequential in nature by Chernoff and by Wetherill: Response surface

designs are factorial in nature, employing several quantitative indepen-

dent variables. The dependent variable is often assumed continuous

and a polynomial function of the independent variables. Purposes of

these designs include locating maxima or estimating parameters of the

polynomial. Decision rules which specify the "design points" to use

in the next stage and when to stop the process tend to be informal.

In contrast to response surface methodology are stochastic

approximation techniques in which a single continuous independent

variable is investigated and where values of chat independent variable

are determined formally as a function both of the preceding values and

5
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the responses that were obtained when they were administered. A technique

due to Robbins and Monro (1951) is an example. Its purpose is to find

that value of.the independent variable, say 0, such that the expected

value of the dependent variable given 0 is equal to some predetermined

constant.

Our research investigates two examples of the Robbins-Monro

process and three variant procedures which were motivated by it. Much

of the previous research in this area has been focused on asymptotic

properties. Chernoff (1975) gives a brief and readable review of this

work. Of particular interest here is a paper by Hodges anti Lehmann

(1956) because it suggests assuming a linear relationship between the

independent and dependent variables and also assumes that the slope

parameter is known. While these two conditions would seldom be met in

practice, their theoretical and numerical results provide a basis of

comparison for empirical findings.

The Robbins-Monro procedure has been modified by some researchers

so that two values of the independent variable are employed at each

step (e.g. see Venter (1967)). This procedure has certain advantages,

but only the case in which a single value of the independent variable

is used at each step is studied here.

Presently, we know of no application of Robbins-Monro procedures

in an educational experiment. However, the technique has been applied

to a measurement problem by Lord (1971a, 1971b). Those two papers

dealt with quantal responses, a subject not dealt with here. (For

this reason and because we did not want to define the values of the

independent variable a priori we have not considered the "Up and Down"

6
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method of stochastic approximation.) The present area of investigation

has similarities with sequential estimation, but also some important

differences. For the estimation problem only the "stopping rule"

need be considered, for no independent variable is manipulated.

7
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The Problem

Assume that the experimenter's goal ia that the value og a

particular population mean is to be changed from ita present value,

6, to a different value, e. For example, a population of adults may on

the average score 6 100 on a particular standardized reading teat

and the goal ia to increase that average to ci = 116. The experimenter

has in mind a treatment variable (say, number of hours of individual

tutoring) which he knows can affect the average reading score, but the

exact nature of the relationship between reading score and tutoring is

unknown. In other words, the "end" ia known, but not the specific

n
means 11

, and therefore, the appropriate value of the independent variable,

or treatment condition, must be found. More formally, the expected

value of the reading score ia a function of the independent wriable,

E(y) = f(x), and the experimenter wishes to determine that specific value

of the independent variable, x = 0, for which E(y) = a, or E(y(x * 0)) * e.

For present purposes it ia assumed that if x >0 then E(y(x)) >a, and if

x < 0 then E(y(x)) < a. Given this situation the experimenter can select

an initial value x
1

and thereafter choose the value of the independent

variable as xn
+ 1

= xn - an (70(x
n
).- a). The a

n
_are selected to have

several characteristics, the most intuitively important of which is that

1a
n
-0 as n-i* "at a suitable rate". One possible definition ia a *

n n

1
If appropriate a

n
are chosen, such as -, Robbins and Monro (1951) proved

n-1*, x--18. The experimenter, of course, must have sore feel for the

8



2-2

speed of convergence, and how this convergence is affected by the

choice of xl, the relationship between E(y(x)) and x, and the density

of y(x). He also must have some idea of when to atop the experimentation.

Most of the results in the literature to date, however, are asymptotic

in nature, with relatively little work being done on stopping rules

(Chernoff (1975) offers no citations, but see Farrell (1962)). The

literature, as it appears to us, provides little if any practical

guidance for the experimenter.

9
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Methods

Initial results were obtained with an interactive empirical approach

using computer simulation techniques on a time-ehared CDC Cyber 74.

Many computer runs were made as the researchers sought to understand

the importance of the numerous parameters which can be considered. Following

this first phase of computer runs, during which all the values produced

from a single sequential experiment were often observed, more traditional

Monte Carlo experiments were performed, replicating the experiments a

number of times to obtain estimates of how the procedures operate

"in the long run". In sumiary, the approach used tombined both an inter-

active search during which the researchers observed the behavior of

various functional relationships during a single replication and more

traditional "fixed" type of experiments in which a number of replications

of an experimental situation were made to obtain stable estimators.

All pseudo random numbers were obtained from either NORMAL or

RAN3F which are a normal (N) random number generator and a uniform (U)

random number generator, respectively. One thousand random numbers

were generated per each call of these routines and following generation

they were immediately permuted by an independent randomization procedure

using the program PERMUTE. All routines are maintained by the

University of Minnesota Computer Center.

10
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Design

The model for the random variable y was y + co where

= E(y(x)) = f(x) = 0 x + 0 xl + 0
2
x
2
+ 0

3
x
3

and where c is
y.x 1

independently identically distributed either as N(00
2

) or U(0,0
2

).
y.x y.x

Following the interactive search in which many parametric specifications

and stopping rules were studied, certain choices of parameters and

rules were made for the more standard type of Monte Carlo investigation.

These included:

1 1 1 s
k

1. Four definitions of a . They were a im where
n n n nO

6 nt3
n

-

a is the first derivative of f(x) evaluated at 6, 0 is the usual slope
6

n

estimator, and s
k
= 1E c 1

'

k = INTIs/Icl, where c >0 and even,
i

i = j

= max(1, n c + 1) and
n
= 1 if y(x) < a, or z

n
= -1 if y(x) >a.

(INT means "integer part of.") For the procedure employing 0,

s
k

1 1
a = - for n < 20 and .."7. otherwise. In the definition a =
n n n n

nO

a "finite memory" is introduced into the approximation protess, and

successively positive or negative values of yn(xn) - u cause larger

adjustments x
n + 1 than is the case with the other definitions. Both

s and 0 are random variables and this results in a variant of the

Robbins-Monro procedure in 'that it assumes the an to be "a fixed sequence

of positive constants."

11



4-2

2. Two stopping rules. They were

1

0

( x
n - n)

2 )2t
/2

R1: Stop if n > 20 and if a contained in + 0
- 2 py.x y.x n

(E(x
i

x
n
)

A

(where p im 6 + Ox ) or n 16 200.
y.x n

1(2: Stop if n >20 and, considering the last 20 values of z, if

Ex 9, 10, or 11, and the number of "runs" is 9, 10, 11, 12, or 13, or

if n 200.

3. Three sets.of 00, 01, 02, B. They were (100, .14142, 0, 0)

[100, .34641, 0, 01, and [100, .12686, .0058512, -.0000237671.

4. Two conditional variances. They were a
2

100 and 25.
y.x

Most "final" experiments were based on 500 rep1ications.
1

Based on these

replications, the mean and variance were computed for (xn - 0) at

n 30, 50, 100 steps and for both rules, R1 and R2. Additionally, for

both rules the mean and variance of the number of steps needed to stop

were also computed.

1
a
n

- was included in the experiment because it was suggested in
n

Robbins and MOnro's original paper. Hodges and Lehmann provide results

1
on a .2 --- when the regression is in fact linear, and it has certain

n nO
1

optimal characteristics and therefore was included as a basis for

comparisons. In discussing the preceding work, Chernoff (1975) remarked

that "In the stochastic approximation case using sequences an Fe there

is no prior knowledge of 0 to insure that c 0
-1

. However, as data

12



accumulate one would hopefully obtain a satiefactory eatimate of B

providing the succeasive x
n

are not too cloae to each other (p. 70).

We interpreted these comment(' to mean that when one hap "aufficient"

information one would estimate 6
1

using the least aquarea eatimator,

411

2

B. Initial result(' demonstrated that the inatability of 6 for omall n

caused erratic adjuatmenta and poor convergence. Thia lead to the

1 1
procedure a m - for n 1, . . ., 19 and thereafter. The a m

n n n
n6

procedure wag developed during the interactive part of the preaent reav.Irch.

It seemed reaponsble to specify an adjuatment procedure which would make

larger adjustments if E(yn(xn)) - a were judged to be large. Conaidering

only the aign of y(x) - a and taking c 4, for the pattern(' + + +) or

(- - -), s
k

16, for patterns like (+ + + ) or (- - - +)
k

2,

and for pattern(' with two pluaes and two minuses, s
k

1. This type of

adjustment assume(' that the error distribution(' are symmetric so that

1
the probability of a plus at x

n
0 is -. During the interactive phaaes

2

of this research, c 4 and c 10 were found to work well.

Stopping rule RI employs the standard confidence interval for

estimating u
y.x

. This seemed a reaponable approach to consider, especially

1
when a

n
m is employed. The confidence coefficient, p, esed wag .60. Thia
nB

value was chosen during the interactive phaae on the baois of performance.

Stopping rule R2 comes from reasoning similar to that used in

developing the a
k

procedure. At x
n
- 8, for symmetric error distributions

13
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the sign of yn(xn) would b* indepeodently distributed so haraoulli

1
variable with parameter -. R2 ssentially tsts two hypotheses. ems

2

concerning "randomness" and ths other that the proportioo of "pluses*

is
1

e.

14



Results

Lesulte v! the run* are presented in Tables 1-8. The 244.E. ant

'At!+-', of t!WP taa (x - e). are reported for the condltions stutted as

as liNe near. and var lance of the "number of steps to top" for RI end

tversae squares blae, (1
n

- e)
2

le not reported, but it can be

cls!.T stat,-;e4 `T squaring the average bias and adding this to the

2
wteta-:r Of :!%40 bias (1.e. E(x e)

2
- V(x

n
0) + (E(x e)) ).

1--0 net:10d employing wee superior to the other methods, but since
118A

w. eeldom t-o. known. results associated with .VA will bt of greatest

at -ben:!Imarks-. It le clear from the results that generally,

1

7.^a'.;Ts. - het the poorest performance. In situations where
n

Information le Available about the relationship between

tr....epen4ont arAl dependent vstiablee. the results would lead us to

a
tft:' C This typically does as well as or better than

t'r othrr ;roced-4re* not enVloyinit ec.. It is narkedlv better when there

IA Aert* re:attc-nithip tletween the independent and dependent variables

pe.,.Dr eart is =Ade (see coiumns 1 and 2 of Tables 1-7). In en

k
it7e7.;: to de!ertine the be havior of a

n
a when s good start" is

:he experiztento reported in Table 8 with xl a e were carried out.

We be:ieve the procedvre did reasonably well under these circumstances.

15
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If wre information is available, one might profitably choose one of

the procedures studied. Neither R1 nor R2 is uniformally better with

respect to bias and number of steps to stop. There also appears to be

at least some interaction with the definition of a
n
, and this complicates

matters in a few instances. Here we can only recommend that one make a

best guess about conditions and use that stoppIng rule which would be

best.

16
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Educational Significance

One potential area of application for stochastic approximation

is that of formative evaluation. Stochastic approximation can suggest

values of the independent variable which would attain programmatic

goals, and this information could be fed to persons directly involved

in program development. Within the framework developed by Sanders and

Cunningham (1974), stochastic approximation could provide "external

information" for "formative interim evaluation activities". When a

summative evaluation is planned, perhaps using one of the more standard

experimental designs, design points can be chosen in the region suggested

through sequential experimentation, thereby increasing the likelihood

that the program will demonstrate its effectiveness.

In general, stochastic approximation would appear to be a useful

technique in any area where individuals have a goal firmly in mind but

lack sufficient knowledge of the independent variable to design an

efficient, more tradieional experiment. Education is goal oriented,

and information about how to achieve a goal is often more important than,

say, information about the exact nature of the relationship between an

independent and dependent variable. Stochastic approximation can provide

useful information about an independent variable, even when its defined

over a broad range of values, while requiring relatively few subjects

for its implementation.

17
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n

2

y.x

Table 1

Mean and Variance of the Bias (xn - 6) at 30 Steps Where xi = 41.

R00,14142,0,01

c,..44(0,0
2

)
y.x

e-U(0,o
2

)
y.x

(80.01 tO2
tO

3

(100,.34641,0,0) (100,.12686,.0058512,
-.0000237671

e..44(00.
2

)
y.x

2 )

y.x
c-41(0,o

2
) ovU(0,0 y2 .x

)
y.x

. . .

I

-.49 .38 -.13 .20 -.96 -.79

100

1
160.93 177.75 27.18 29.84 12.85 14.54

n6; -.19
.

.24 -.08 .10 -.53 -.48

25
40.85 44.77 6.81 7.46 3.39 3.81

1

-61.16 -61.11 -9.73 -9.25 -6.57 -6.68

100

1
72.00 81.11 27.65 32.02 20.82 22.91

n -61.27 -60.96 -9.46 -9.62
_

-6.48 -6.36

25
18.89 20.48

1

7.69 7.62 4.74
1 1

5.59

-44.86 -41.86 -5.65 -4.55 -3.14 -2.36

100
1436.76 1385.58 140.41 180.92 108.84 188.85

1

n$

.

-36.23 -35.41 -5.72 -5.57 -3.07 -3.10

25
490.86 577.45 65.93 51.08 43.88 50.68

.
,

-1.92 -3.58 .42 .02 -.18 -.19

100
k 298.62 452.01 72.73 97.26 44.55 61.85

.741-(c4)
-.88 -.98 .44 .19 .18

0

-.32

25
71.44 96.15 18.46 22.93 10.77 14.73

-10.85 -17.03
1

-.81 -1.93
I

-.06 -.89 i

100
1 k 835.47 764.57 110.47 87.05 47.69 49.23

2--(c=10)
n

i

.37 -1.98 -.67 -.75 -.10 .26

25
378.17 419.80 24.05 25.86 24.08 11.04

1 1

f
For Tables 1-8 the upper number in each cell is the mean and the lover number
is the variance.

18
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Table 2

Mean and Variance of the Bias (xn e) at 50 Stein Where xi g. 4

11-00$.14142,0,0)

e-N(0,o
2

)
y.x

e-U(002
)

y.x

[00031012,03)

(100,.34641,0,0) [100,.12686,.0058512,
-A:000237671

e-N(00,
2

)
y.x

DvU(0,02 )
y.x

e-N(002
) ev0(0,0

2
)

y.x y.x

.30 .34 .17 .16 -.43 -.58

100

1
93.84 109.69 15.75 18.35 7.21 8.67

nO; .18 .20 .08 .08 -.28
.

-.25

25
23.66 27.54 3.94 4.59 1.96 2.25

-56.87 -56.83 -8.02 -7.69 . -5.04 -5.17

100
62.61 69.82 20.59 23.88 13.69 15.49

1

n -56.92 -56.61 -7.92 -8.04 -4.98 -4.88

25
/16.49 17.82 5.44 5.88 3.12 3.67

.

-20.43 -22.29 -1.38 -1.51
_

-.63 -.67

100
1036.14 994.74 158.51 104.35 33.50 67.36

1

nO

.

-20.56 -20.91 -2.97 -3.20 -1.47

25
231.29 236.72 25.52 18.06 12.84 13.58-
-1.48 -1.99 .07 -.06 .26 -.34

100
k 157.02 262.19 39.42 50.39 25.33 33.99

4)
n -.46

-
-.47 .27 .11

-
.04 .07

25
40.04 58.47 9.83 13.56 6.11 8.22

-7.93 -12.07 -.38 -1.36 -.12 -.31

100
k 476.52 513.41 54.41 46.98 32.12 22.28

11-(c=10) A
n .33 -1.81 -.10 -.02 .20 .16

25
169.92 229.20 12.92 12.72 6.35 6.72.

19



Table 3

Mean and Variance of the Bias (xn - A) at 100 Steps Where xl =. 4

(100,.14142,0,01

2
a
n

0 vvN(0,0
2

)
y.x y.x

evtl(Q40
2

)y.x

[0
0
.0

1
,82 0

3
]

(100,.34641,0,01 (100,.12686,.0058512,
-.0000237671

voN(0,0
2

)
y.x

DvB(0,0
2

)
y.x

e-41(0,0
2

)
y.x

2
Dvil(0,0 )

y.x

.35 .00 .16 .01 -.16 -.27 I

100
48.75 58.39 8.14 9.75 3.56 4.65

1 1- L

nOf
0 .19 .01 .08 .00 -.11 -.16

25
12.20 14.63 2.03 2.44 .95 1.08

-51.56 -51.46 -6.31 -6.05 -3.53 -3.63

100
I

1
53.31 57.95 13.19 15.68 7.21 8.42

n -51.56 -51.36 -6.20 -6.28
1

-3.48 -3.42

25
13.64 14.56 3.50 3.83 1.71 2.07

-8.62 -9.93 -.43 -.40 -.16 -.31

100

1
333.15 308.16 44.44 34.35 8.90 18.12

n0 -10.44 -10.67 -1.39 -1.53 -.50 -.58

25
74.54 71.06 7.19 5.60 3.08 3.30

-.28 -1.03 .25 .15 .09 .02

100
k 78.34 115.32 21.10 27.90 11.89 15.02

71-(c=4)
-.11 -.27 .05 -.04 -.05 .02

25
19.31 28.79 5.08 6.84 3.10 4.06

-5.75 -7.97 -.35 -.61 .04 -.29
100

k 227.50 299.75 19.40 35.03 11.50 14.37
11-(c10)
n

-.26 -1.61 .00 -.06 .12 -.01
25

71.40 113.45 5.18 8.52 2.98 3.151

20



Table 4

Mean and Variance of the Bias (1
n

- 0) When

Stopped with Parametric Rule (R1) Where xi is 4

(100,.14142,0,0)

18 8 8 8 1
0' 1' 2' 3

(100$.34641,0,0) (100$.12686,.0058512,
-.000023767)

a
n

o
2

es-N(00
2

) vs-U(0,0
2

) evN(0,0
2

) evti(00
2

) e.41(0,0
2

) E./u(0,0
2

)
y.x y.x y.x y.x y.x y.x y.x

100

1

n8;

25

-.70

237.97

.66

265.39

-.17

40.34

.33

44.80
-

-1.07

18.41

-1.09

21.33

-.25

60.46

.40

67.14

-.10

10.08

.16

11.18

-.49

4.75

-.55

5.50

100

1

-47.45

61.09

*
-46.62

49.33

*
-7.82

23.91

-7.49

24.05

-4.42

13.57

-4.54

14.73
,

n

25

-46.58

11.45

*
-46.76

12.53

*
-4.94

2.87

*
-5.04

2.70

*
-2.60

1.38

-2.54
*

1.26

100

1

-14.39

924.61

-12.61

1000.61

-5.28

78.38

-5.11

96.76

72.70

44.00

-2.56

47.93

n6
25

-5.16

112.84

-5.46

71.87

-2.04

13.92

-1.92

12.36

-.68

5.93

-.74

3.91

100
k

25

-2.36

352.92

-4.32

460.81

.06

59.17

.41

67.44

-.80

28.71

-1.15

32.94
_

-.89

91.96

-1.20

110.92

.10

14.93

.22

15.90

-.32

7.28

-.65

7.61

.

100
k

s__.(c=10)

-13.25

498.27

-14.75

502.03

-1.91

77.19

-2.41

69.56

-.42

32.00

-.71

33.87

n

25
-1.88

129.16

-1.79

114.31

-.48

14.53

-.64

17.57
_._.,

.42

8.27

.39

8.20

*
The estimates in these cells ire based on 100replications instead of 500.
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Table 5

Mean and Variance of the Number of Steps

When Stopped with Parametric Rule (R1) Where xl so 4

(1.00,.14142,0,01

(00
4

1,
0
2'

0
3

]

(100,.34641,0,01 (100,.12686,.0058512,
-.000023767]

2
a
n

a
2

eYN(00
2

) o.41(00,
2

) e41(00 2
) evt1(00

2
) c-41(00 )

y.x y.x y.x y.x y.x y.x y.x

20.18 20.21 20.13 20.18 23.13 22.23

100
'

1
--T

2.37 1.79 1.30 1.54 338.95 194.61

20.17 20.13 20.18 20.14 26.28 24.96floe

25
2.07 1.08 2.33 1.09 622.57 464.60

_ -
196.44 198.24 87.64 85.30 92.26 95.61

100 * *

627.30 309.76 7087.82 7003.51 7320.44 7372.14
1

n 200.00 200.00 191.49 196.05 191.22 194.62

25 * * * * *

0.00 0.00 1393.06 572.69 1416.44 622.76

89.66 93.18 28.76 30.11 28.78 29.03

100
5019.12 5523.06 788.86 1132.37 695.83 716.53

1

nO 177.87 178.80 76.85 82.71 78.21 80.39.

25
2849.49 2840.74 2214.93 2414.49 1589.28 1468.92

24.86 27.53 25.68 26.46 26.02 27.16

100
k 338.35 610.14 210.89 262.41 165.28 228.26

-11--(c=4)
25.03 27.37 25.50 26.75 25.87 28.97

25
477.47 711.50 151.27 213.57 137.34 405.82

-

53.20 65.79 24.32 25.61 23.96 26.59
100

k 3807.48 5113.46 399.95 492.67 250.35 654.13
2-4c=10)
n

_

83.42 111.00 27.24 29.36 27.01

,

26.12
25

6015.15 6715.59 775.31 1136.49 777.34 646.42
b

The estimates in these cells are based on.100 replications instead of 500.
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Table 6

Mean and Variance of the Bias (x
n

0) When

Stopped with Nonparametric Rule (R2) Where xi 4

[1.00,.14142,0,0]

[0
0
.0

l'
0
2'

0 ]

[100.34641,00] [100,.12686,.0058512,
-.000023767]

2
a
n y.x

e-N(0,u
2

) v.-U(0,u
2

)
4

v-N(00u
2

.) v-11(0,u
2

.) c-N(0,20 ) evu(0,a 2
)

y.x y.x yx yx y.x y.x
-__

-.21 .05 -.01 .07 -.94 -.80

100

1
173.52 179.81 29.40 29.87 12.59 14.97

711-37
0 .00 .08 .00 .03 -.44 -.54

25
44.00 44.88 7.34 7.48 3.42 4.09

-48.05 -50.04 -7.75 -8.02 -4.68 -5.52

100
42.17 51.09 16.73 25.63 11.06 17.34

1

n -46.74 -46.54 -6.17 -7.01 -3.66 -4.10
.

25
11.18 12.08 3.10 4.97 1.75 2.90

-9.77 -14.57 -2.86 -3.25 -1.55 -2.16

100
526.20 631.61 54.60 84.38 18.48 30.35

1
_

n0 -9.70
1

-11.74 -2.53 -3.42 -1.48 -1.83

25
56.80 82.45 8.40 11.26 4.10 5.39

. -.46 -2.30 .53 -.20 -.47 -.60
100

k 20.88 453.42 77.44 106.10 46.65 65.27

-.04 -.50 .49 .07 .12 -.11
25

61.75 92.97 16.49 25.41 10.77 14.87

-8.11 -12.36 -.34

_

-1.73 .29 -.25
100

k 391.91 502.21 42.68 64.64 30.43 33.71
1-.(c=10)
n

.49 -1.48 .00 -.12 .61 .62
25

138.40 215.96 10.91 16.19 6.55 7.37
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a
n

Table 7

Mean and Variance of the Number of Steps

When Stopped with Nonparametric Rule (R2) Where xi as 4

(0 0 0 0 )

(100,.14142,0,0] (100,.34641,0,0) fl00,.12686,.0058512,
-.-000023767]

o
2 0,N(002

) 0,0(002
) 0..1(00

2
) 0,-0(00

2
) 0,1(00 2

) 0.11(00
2

)y.x y.x y.x y.x y.x y.x y.x

32.42 31.79 32.40 31.86 35.06 33.45

100

1
226.32 187.77 223.18 187.39 294.07 47.42

n13;
32.60 31.98 32.60 31.98 34.81 33.31

25
224.71 187.41 224.71 187.41 240.51 237.54

173.71 136.65 61.13 50.38 60.90 48.90

100

1
2234.70 3301.21 1369.02 917.82 1359.13 756.51

n 200.00 199.66 112.97 84.67 101.78 79.81

25
0.00 34.43 2832.98 1962.52 2279.99 1652.54

_

84.30 70.84 51.21 43.98 47.11 44.06

100
1188.04 999.99 1039.26 681.22 596.34 642.90

1
L

n$ 110.54 94.07
-

66.81 57.02 59.28 53.61

25
1751.84 1258.61 718.70 614.92 536.85 471.00

-
39.48 36.76 31.71 30.31 30.70 30.02

100
k 365.17 341.61 203.34 156.66 191.41 172.76

-11-(c=4)
36.85 36.51 35.16 31.93 31.08 30.98

25
239.20 297.97 310.12 171.47 140.91 162.65

58.92 54.05 39.62 36.75 35.52 35.71
100

k 994.45 745.88 431.32 358.61 307.83 340.59
1.1-(c=10)
n

,

64.06 59.23 39.79 37.49 37.07 34.87
25

1192.78 953.26 407.40 324.22 364.19 315.87

2 4



Table 8

Means and Variances Where x
1
00 and c-N(0,o

2
.4.00)

y.x

(0
0

0
1'

0
2'

0
3

i a
n

Bias (xn-8)

at 30 steps

Bias (xn-0)

at 50 steps

Bias (xs-0 )

at 100 steps

Bias (xs-0)

when stopped
with R1

No. of steps

when stopped
with R1

Bias (xs-0)

when stopped
with R2

No. of steps

when stopped
with R2

1

-.49

160.93

.30

93.84

.35

48.75

-.88

235.51

20.33

1.11

-.22

172.67

32.59

222.70
nO'e

(100,.14142,0,0]

k
-1-(c=4)
n

1

.30

234.71

.10

148.69

.39

77.78

-.03

243.27

23.82

80.88

-.25

232.17

33.11

289.16

-.13

27.18

.17

15.75

.16

_

8.14

-.26

39.86

20.30

1.07

-.01

29.24

32.57

219.56

n0'
0

(100,34641,0,0]

k .25

72.55

.17

36.14

.08

19.10

-.06

63.29

25.45

176.93

.66

77.57

30.56

'203.33

n

26
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Footnotes

1
The original plan was to have 500 replications for each set of .

1
conditions, however, given the value of x

1
used here, a In - converged

n n

slowly and for some conditions the rule "stop if n 200" was used

for virtually every replication. We decided to use only 100 replications

in these instances, and those runs are noted in the tables.

2
The "c" in this quote is not defined in the same way as ihe "c"

in the def inition of a 0-- .

. n n
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